Member Site › Forums › Rosetta 3 › Rosetta 3 – Applications › extract silent error – tag mismatch
- This topic has 5 replies, 2 voices, and was last updated 10 years, 9 months ago by Anonymous.
-
AuthorPosts
-
-
April 3, 2014 at 7:13 am #1865Anonymous
Dear all,
I have been trying to extract PDBs from silent file and keep getting this error:
core.init: command: /opt/rosetta3.3/rosetta_source/bin/extract_pdbs.linuxgccrelease -in:file:silent silent.out -database /opt/rosetta3.3/rosetta_database/
core.init: ‘RNG device’ seed mode, using ‘/dev/urandom’, seed=-20988320 seed_offset=0 real_seed=-20988320
core.init.random: RandomGenerator:init: Normal mode, seed=-20988320 RG_type=mt19937
core.chemical.ResidueTypeSet: Finished initializing fa_standard residue type set. Created 4218 residue types
core.io.silent: Reading all structures from silent.out
Input failed: tag mismatch JUMP_CLONES
Input failed: tag mismatch BB_FOLLOWS
Input failed: tag mismatch CHI_FOLLOWS
Input failed: tag mismatch JUMP_FOLLOWS
Input failed: tag mismatch DOFS
Input failed: tag mismatch SCORE_MULTIPLY
Segmentation fault (core dumped)can anyone tell me what could be the reason for this problem?
thanks..
-
April 3, 2014 at 2:32 pm #9942Anonymous
One possibility is that you’re trying to read a silent file produced with a later version of Rosetta. The silent file format has had some additions over the years, so older versions of Rosetta may not be able to read silent files produced with later versions. (We try to be backward compatible, so old silent files should be readable by newer versions, but sometimes that breaks too.)
The other possibility is that you have a corrupt silent file. Try using the flag “-silent_read_through_errors”. This will try to skip structures with errors.
If neither of these two works/applies, we’d likely have to take a closer look at your silent file.
-
April 19, 2014 at 6:20 am #9999Anonymous
yes I am using symmetry. I tried providing symm file, again it gave same error.
posting silent file part here:
SEQUENCE: MQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGIMQFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGIXX
SCORE: score fa_atr fa_rep fa_sol fa_intra_rep pro_close fa_pair hbond_sr_bb hbond_lr_bb hbond_bb_sc hbond_sc dslf_ss_dst dslf_cs_ang dslf_ss_dih dslf_ca_dih rama omega fa_dun p_aa_pp ref Filter_Stage2_aBefore Filter_Stage2_bQuarter Filter_Stage2_cHalf Filter_Stage2_dEnd loop_chain_score loop_overlap_score loop_total_score loop_vdw_score looprms prefa_centroid_score time description
SCORE: -318.614 -704.696 96.701 353.708 1.771 0.506 -12.745 -39.177 -17.803 -25.208 -22.970 0.000 0.000 0.000 0.000 -18.256 14.310 115.789 -18.106 -42.440 0.000 0.000 0.000 0.000 -1.000 -1.000 -1.000 -1.000 -1.000 5.306 360.000 S_00001
REMARK BINARY SILENTFILE
FOLD_TREE EDGE 203 97 1 EDGE 203 204 3 EDGE 204 198 2 EDGE 198 102 -1 EDGE 198 202 -1 EDGE 97 1 -1 EDGE 97 101 -1 S_00001
RT 0.807551 -0.566465 0.164254 -0.228262 -0.0433814 0.972633 -0.543836 -0.822943 -0.164335 -1.9728 1.73124 -213.082 S_00001
RT 0.807551 -0.566465 0.164254 -0.228262 -0.0433814 0.972633 -0.543836 -0.822943 -0.164335 -1.9728 1.73124 -213.082 S_00001
RT -1 -2.44929e-16 0 2.44929e-16 -1 0 0 0 1 0 0 0 S_00001
ANNOTATED_SEQUENCE: M[MET_p:NtermProteinFull]QFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI[ILE_p:CtermProteinFull]M[MET_p:NtermProteinFull]QFKVYTYKRESRYRLFVDVQSDIIDTPGRRMVIPLASARLLSDKVSRELYPVVHIGDESWRMMTTDMASVPVSVIGEEVADLSHRENDIKNAINLMFWGI[ILE_p:CtermProteinFull]XX S_00001
SYMMETRY_INFO N 2 N_VIRT 2 N_INTERFACE 1 TYPE simple BB_CLONES_SIZE 101 CHI_CLONES_SIZE 101 JUMP_CLONES_SIZE 1 BB_FOLLOWS_SIZE 202 CHI_FOLLOWS_SIZE 202 JUMP_FOLLOWS_SIZE 2 DOFS_SIZE 1 SCORE_MULTIPLY_SIZE 204 BB_CLONES 1,102 2,103 3,104 4,105 5,106 6,107 7,108 8,109 9,110 10,111 11,112 12,113 13,114 14,115 15,116 16,117 17,118 18,119 19,120 20,121 21,122 22,123 23,124 24,125 25,126 26,127 27,128 28,129 29,130 30,131 31,132 32,133 33,134 34,135 35,136 36,137 37,138 38,139 39,140 40,141 41,142 42,143 43,144 44,145 45,146 46,147 47,148 48,149 49,150 50,151 51,152 52,153 53,154 54,155 55,156 56,157 57,158 58,159 59,160 60,161 61,162 62,163 63,164 64,165 65,166 66,167 67,168 68,169 69,170 70,171 71,172 72,173 73,174 74,175 75,176 76,177 77,178 78,179 79,180 80,181 81,182 82,183 83,184 84,185 85,186 86,187 87,188 88,189 89,190 90,191 91,192 92,193 93,194 94,195 95,196 96,197 97,198 98,199 99,200 100,201 101,202 CHI_CLONES 1,102 2,103 3,104 4,105 5,106 6,107 7,108 8,109 9,110 10,111 11,112 12,113 13,114 14,115 15,116 16,117 17,118 18,119 19,120 20,121 21,122 22,123 23,124 24,125 25,126 26,127 27,128 28,129 29,130 30,131 31,132 32,133 33,134 34,135 35,136 36,137 37,138 38,139 39,140 40,141 41,142 42,143 43,144 44,145 45,146 46,147 47,148 48,149 49,150 50,151 51,152 52,153 53,154 54,155 55,156 56,157 57,158 58,159 59,160 60,161 61,162 62,163 63,164 64,165 65,166 66,167 67,168 68,169 69,170 70,171 71,172 72,173 73,174 74,175 75,176 76,177 77,178 78,179 79,180 80,181 81,182 82,183 83,184 84,185 85,186 86,187 87,188 88,189 89,190 90,191 91,192 92,193 93,194 94,195 95,196 96,197 97,198 98,199 99,200 100,201 101,202 JUMP_CLONES 1,2 BB_FOLLOWS 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0 22,0 23,0 24,0 25,0 26,0 27,0 28,0 29,0 30,0 31,0 32,0 33,0 34,0 35,0 36,0 37,0 38,0 39,0 40,0 41,0 42,0 43,0 44,0 45,0 46,0 47,0 48,0 49,0 50,0 51,0 52,0 53,0 54,0 55,0 56,0 57,0 58,0 59,0 60,0 61,0 62,0 63,0 64,0 65,0 66,0 67,0 68,0 69,0 70,0 71,0 72,0 73,0 74,0 75,0 76,0 77,0 78,0 79,0 80,0 81,0 82,0 83,0 84,0 85,0 86,0 87,0 88,0 89,0 90,0 91,0 92,0 93,0 94,0 95,0 96,0 97,0 98,0 99,0 100,0 101,0 102,1 103,2 104,3 105,4 106,5 107,6 108,7 109,8 110,9 111,10 112,11 113,12 114,13 115,14 116,15 117,16 118,17 119,18 120,19 121,20 122,21 123,22 124,23 125,24 126,25 127,26 128,27 129,28 130,29 131,30 132,31 133,32 134,33 135,34 136,35 137,36 138,37 139,38 140,39 141,40 142,41 143,42 144,43 145,44 146,45 147,46 148,47 149,48 150,49 151,50 152,51 153,52 154,53 155,54 156,55 157,56 158,57 159,58 160,59 161,60 162,61 163,62 164,63 165,64 166,65 167,66 168,67 169,68 170,69 171,70 172,71 173,72 174,73 175,74 176,75 177,76 178,77 179,78 180,79 181,80 182,81 183,82 184,83 185,84 186,85 187,86 188,87 189,88 190,89 191,90 192,91 193,92 194,93 195,94 196,95 197,96 198,97 199,98 200,99 201,100 202,101 CHI_FOLLOWS 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0 16,0 17,0 18,0 19,0 20,0 21,0 22,0 23,0 24,0 25,0 26,0 27,0 28,0 29,0 30,0 31,0 32,0 33,0 34,0 35,0 36,0 37,0 38,0 39,0 40,0 41,0 42,0 43,0 44,0 45,0 46,0 47,0 48,0 49,0 50,0 51,0 52,0 53,0 54,0 55,0 56,0 57,0 58,0 59,0 60,0 61,0 62,0 63,0 64,0 65,0 66,0 67,0 68,0 69,0 70,0 71,0 72,0 73,0 74,0 75,0 76,0 77,0 78,0 79,0 80,0 81,0 82,0 83,0 84,0 85,0 86,0 87,0 88,0 89,0 90,0 91,0 92,0 93,0 94,0 95,0 96,0 97,0 98,0 99,0 100,0 101,0 102,1 103,2 104,3 105,4 106,5 107,6 108,7 109,8 110,9 111,10 112,11 113,12 114,13 115,14 116,15 117,16 118,17 119,18 120,19 121,20 122,21 123,22 124,23 125,24 126,25 127,26 128,27 129,28 130,29 131,30 132,31 133,32 134,33 135,34 136,35 137,36 138,37 139,38 140,39 141,40 142,41 143,42 144,43 145,44 146,45 147,46 148,47 149,48 150,49 151,50 152,51 153,52 154,53 155,54 156,55 157,56 158,57 159,58 160,59 161,60 162,61 163,62 164,63 165,64 166,65 167,66 168,67 169,68 170,69 171,70 172,71 173,72 174,73 175,74 176,75 177,76 178,77 179,78 180,79 181,80 182,81 183,82 184,83 185,84 186,85 187,86 188,87 189,88 190,89 191,90 192,91 193,92 194,93 195,94 196,95 197,96 198,97 199,98 200,99 201,100 202,101 JUMP_FOLLOWS 1,0 2,1 DOFS 1,x(50:50;0:0;n2c)angle_x(0:360;0:0;n2c)angle_y(0:360;0:0;n2c)angle_z(0:360;0:0;n2c) SCORE_MULTIPLY 2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 S_00001
CHAIN_ENDINGS 101 202 S_00001
LUTQgBV7DrEcOKWzwIopbB9aofE88pXzwbDRcB9moHEsXyWzwdqubBxEi/DchTSzwF64WBRBHoEM6dUzwe0dVB5SV/E8AoVzwiWxPBRncIF800Rzwks+OBtq9iF8raUzwigMgBlQL2EsOSTzwV5OhB5UyzEsg4Yzw+d1hBZx+iEccxUzwJB2aBlE4hEcx5bzwJB5XB10WmEsCQQzwAxeTBJg6dE8VbVzwailUB9zxAF8M4ZzwPD7YBtsMJFc9oUzwMkmLB9IuqFMDdSzwc4POBJ5LiFcttYzwSDnSBlEKsF8iqTzw S_00001
L8ZZdB9vI4DccGbzwESdeBJtVKDctwazwLOIaBF5ezC8FkXzwyAUbBF0cZC8CEUzwj71eB9yx2CMOXgzwer+fB5oBHCsrZgzwOgDgBBcUpBcCBmzwLVveBJ3ZKCMy5pzw624gBtB9YAMkemzwDmhdBZ4UDE8TtezwGqGhBVUAFDMCpYzwu8AhBBFxHDcpcizwYhCbB9WE9C8+VizwYo2dBFZ4gBcY2dzwPuCiBN4YKC8L/ezwWY+gBVdi6/rYFqzwZdbhB13Dw/7MOjzw S_00001
EuzGVBFhX9C8byYzwcjlQBJqmoCc8KWzwNr5LBBlWHDsniVzwrYVKBJ8BdD84VZzwY81OBlcCBCMwUZzwcE6JBtSuXB8ZJXzw0FKKBdWllAM2kSzwlVAFBFK9hB8VqZzwdnnFBR8L9/7YkQzwfrdABFZA7A8uqXzwgexABx3RJAsSHTzwmsZUBNE2TD8qmbzwXLuRBdIqeCcSJSzwWz/RBxk/RBcMRZzw9D9NBBywJCcpcdzwHc/NBlrEdAsLkQzwftwEBpcoECchQdzwG33FBVfwu+bR+Mzw/WR5ABJiDBcxrZzwN1Y6A1LRV/7GiRzw S_00001
ElWrJBRYGJD8/tQzwkOwEBhK3gD8wvPzwcR9/AtH2CDs5PPzwmqNAB9ntiCMOaMzw9oRFBRkO8D82sKzwEYjJBBoaPE8lBLzwE8XKBpIQaEM1oFzwN+PPBRn0oE8TtFzwQFaQBVm6xE8HVAzwSYcLB5Nk5CMcpNzw//6DBlE41DsMITzw+uMGB1QjmDcRaHzwnAZBBVAiFEMPAKzwWaTIBRxRbE8H+NzwJcSNBZ5DIEcCUMzwj45KB9Z6NEcRmCzwbn0GBpHqjE8YtEzwfvfOBV5x1E8VhIzwuNrSBhCgfEMKEHzwqZqTBpBd7E8IjAzwmHHRBBm5lEs/t9ywyFPNBFKk6EsmE/yw S_00001
EJ3S3A9qgND8lBSzwFrEuAZkGxCMzZSzwPQRnAB/LzCMtWNzw+tEiAxfgTDMVRMzwRtCnAFDE8CMhRXzwLLJaAddJgC8gWXzwB5VtA5no2Cs0bczwu7F3AFECqDMC7TzwkciwAJmtPCcQtSzwretkAtFodDM0CXzw8yYQAVNVoC8d0azwNg7QAd2glCcktTzwX7yeA9lL9B8hlXzwldQoA18h+C8Z1fzwtkCwAp0kVCM4xczwDXQ0Alc5LDcCZczw S_00001
EKWVnA5bhQCswRKzwK9TgA9SjMCsapFzwrJCMAhLUqBMqFHzw4wXMA5C8qAcyAKzwxrCmA5cdqB8xFBzwf5VuAhLKQCcIQ+ywsN74A1fOQCcA7/ywYckrAxBZpCs255ywxMRABxaxoC8GW9ywsNHzAF/CCDc4S3ywkAm9Ad2pBDMzB5ywggkCBBYIaDcPc2yw6FYsARGmwBszKLzw3C8bAtCPsCMvPEzws73pAt/GyAMD0CzwqG4fARabWBseP+yw3PM7Ah0+4BsbVDzwtsRjAtxkpC8lj4ywKSaEBdRhoCs8s+ywKWxwAR9sVDsy4zywnCEGBpG7XD8+A4yw S_00001
En/O0/Ik9EC8OBFzwfbEr+QKFiBMa/FzwVRsb+yGg7A8U4AzwWCSA+cxoVBcnd8yw5zPL/GdSRCsvSIzwa7VS/65T1C8SxEzwlyCb+yskgC8ayNzwurw1/oadfCcstCzwY8f5+4wYtAMF0Izwqnx0/qP1BCsunIzwDE6Y9AqBED8hnEzwNkWd/KpU3C8VWPzwHbFI+2fSFCcKfQzwKceP/4rDwCMidNzw S_00001
Lks8j/a2W6/bggBzwARy0/G2ra+7t98ywbedEAz27IAce24yw1qdQArVPDBMJQ6ywNtzKArWYy47s1+ywwbuSAvAc98zYc6ywrDmEAH4rD/jaj3ywzUKkA3kFQ9DBN5ywwRvLArgXXAkJizywr20nAH3qS/zcM1yw8vpgAP37aAUfXyywhtQkAXYMQBk1Xuyw9CNu/OKId/roOFzwifnV/69/v8bl76ywDHNDAX4eX7Ts9Bzwl+QYAfXK587xhAzwlmKn/2ZY9+j1f4ywnTypAPFeK5Dzc7ywRBdAAvSp+AE4SxywXJWwAzgDY/jsR0ywAL4rA/svNBUY5tyw S_00001
LTPA//e15z/LMxzywtGHEAbhA4AMYkvywXDDcAzy8IBMOIvywldahAv0kIC83HuywMnr2/Cx6YAsoMqywU8XQ+GeFZAMyzpywY1lj+4y96/78RkywdUf5/M58z/bd9jyw1hSEARzV++bakeyw8dtw/GGRE+bhyyywG3Q5/yHJ1BsLiwywr2RBALO/v+rrmpywht8BAzfsCB8rHnyw9AZL+YlqZB8woqywECBV+85Xa/LUzsywRhNC+q4J597VbjywuUAy9OsNrAseWhyw/Y/CAdPX5AsJ4kywXzbCAxU7Y+7T8myw9ocUA1CR7+LqheywSlB9/MFTR8b5tdywuIE+/ANWJA8ezbyw S_00001
LgSZkAHY+FAcy4vywEM9vAbXKMA85NvywEkm0AjZiTBcAqyywV5lzAX8bSBMdj3ywMri1ATjHd9b+Qwyw+lrABjWVW9rc1uywYTPDB/II+7DrYvywdkEBBjKWC/jI3rywLCgCBjdyX/zWtmywzVMGBzy0t9zWgkywwFKABTdhpAkq8jywVVJhAvVoa+bL9wyw/y1xAXvOcAcCFryw/NWxALVVc3L37tywfjn0A7x+l8r7g0ywtvyCBDxDE/r2cxywWDIBBjmSU+LKsqywQauCBP6uY9TvezywgUfHBz4zO7D8fuywI5m8AXpzOAUhnsywe1/HBPC1V5DNsmyw2TNHBr+CJ+T0ogywpWw6AHL8OBEVulywz9JBBLP+yAUOFgyw S_00001
LKvs5AHIyIC8DEwywoPv9AHyjuCs60yywCC8DBjQVkCcP91yw9VtFBjto9CciS5ywMn4/AfLuSDs11uywqS51APhrkDsgLsywED/uA35G8DsrIwywro1yA/t0MEcRlyywqCJmALnRuDM2CxywTbz6A3yHGCM0Esyww923AvGm5CMUv1ywjYnCBHq6FDslyrywJL+BBz+IsDMCCxywaVIxAD9fMD8jIqyws9C5AH5Q7DMoQpyw S_00001
LJkQGBX5L+BMX30ywG6DLBH4/hBMpq3yw9QqJBv1I1AcD58ywxHMNB7+3eAs+BAzwd2UOBL2RnAc8G0ywywSQB36yRBcTlvywv6pEBHYHYBsWByyw6z5NBH9xKCsSb4ywJ0yLBbUvk/Lp0yywiorRBjFZOAcRa2yw2HVSBz2gqA8actyw S_00001
LjRfEBTKCoAcUz9ywI/mCBTBh8/7oqCzwrCpABP8k/AcSvGzwh5aABPVFGCcxmFzwgLw8ADk8q9LLhBzwudUABr7VK6DgQ+ywuCdDB/QAi+DDXBzwdcAJBjFil9juQCzw919MBfvMH+jVq+ywdL/LBjIQF/z235yw2s2RB74fw8zgCAzwoiyBBT7g7A8ZD7yw7s5FBjXv3+rejEzwclS2An3E1+LJY/ywCk05AHnnQ87+XFzwfS2CBbzvJ3bnB7ywRns5AfCdH9zrk8ywZacDBDKsNA0qN/yw2/lBBPCIz+z5QFzweUvKB3SH47TkhFzwD0NIBzLam/zy24ywmoAPBvxiT/D1O3ywwphSBPNea6zntDzwiM5UBPwJM9Twa9yw S_00001
L4cb+AHv2gAsBfLzwKfO7ALjDZBcz2Pzw+nuvAn+Z3BcnKPzwwg+oAvwAJBsuDNzwSOg8AXtdrA8HPVzw7hAEBPlleA8r6WzwQcyGB/hrq+72dVzwmKpGB7psbBsR9ZzwC/CMB/XiS+LT/Wzw8j5LBbWTQBsVgbzwttlOBzC+GAM0Aazwyv0TBD9i2/rAjbzwSse+A701B/bFFMzwi8GABLHJJCcy3PzwTak4ADcya/Ln4UzwIKY4AfjCSBMVOYzwhOwEBrxgT8bAFTzwB0fEBL4vKCsxHbzwumLOB7Yt25rb0VzwIw5NBbbkACcB5dzwXrMVBjF8pA8nodzw S_00001
EOHjtAP/xiC8D9Qzwgk6iAjpf1CsobQzwL/VhAPlLaDMbXUzwzFDpAnjsqD8koWzwHrhgADpXDD8KuKzwd8ynADBWmD8+jIzw8dDmA7/vwDcK1Czw88xsAfKhJEMyyAzwHn02ATi3GEM28+ywwQO7AHMknDsQv+yw5xE8AnO8XEcKR9ywHLazAL29zCMIuSzwZ4tZAfBldCM5YRzwOKjQAHeiOD8tpKzwsxRhA3RAnCsiNIzwhKFwAbDHcD8LCJzwF7cmAvrsBEsl4KzwuRhbATAf6DcORCzwwLrnA3UXUDM0bAzwEVMrAPdUZEsubAzweJD3A/BtNDMS+/ywQQYBBbERkDM9V9ywsRh4ADgdmEMGZ9ywAYzBBf8ZWEMZ37yw S_00001
EGvoOAfhzmDMNKVzw3TgJAbuWFEc9pYzw1AXFA/7oZE8NcVzw9/m2/uW+YEccNRzwTNFs/2B6/Ds9IczwZojy/+jwaDsZEgzw5cHh+qbbPD8rvizwKC+JA75JnDsAOkzww+oCAX8HXDcuSTzwhnGXALtwIEstPbzwQHPL/2Sq2DcJBZzwMf6f/SlAOEcoOezwPfJ//iY0/CMaydzwgnw0+eNB1CMuhlzwb/l7+8g8FDMbtfzwWqH89QcJrDct6kzwG3QMAvltMDsbAnzwQljEAvWrBE8oZmzwswEZAbaQuDskOizw S_00001
E6mKNAflqrE8ReXzwbfEJAj6XAFMa/UzwNbtPAbBqSFsXqYzwnSLgArtoRFMHSbzwzA1UAHcECFMApPzwlDXSA3DbXF878MzwK+w9/WYidF8uxKzwQ4vhAPPclF8DmMzwB5L5/imLxFMZTIzwVWogAbyE5FMtHKzwctxNA7n8+F8S+Hzwe0KWATWArE8u0azw176v/GDSCFcZRUzw0DwOAzwI2EMj2Mzw5g9iATEo/EcnOQzwTAmi/qEpSFcKCLzwHXcpAnYzgFMuSOzwoRyU/+Hy1F8JnGzw/gbnAbH+BGsT3JzwM7+LAT8NHG8zBGzw S_00001
EfZmCATMYjF8W1YzwdHbHADyN2FcjDczw0TZZALqqBG8ZkZzw47DXADs+FGMkLVzwQILn/WBSCGcuwczwlIuy/GXYMG8g1fzw5lE79i1b4FMenfzwKZ4p/e9BjFsTrWzwJvWNArEwxF8OAgzw3ExV/CrcEGM70YzwwcnM/29WRGsBTgzwQcjFAjG0QGsVpdzwXU++/iEOKGsZxjzwgNMQ/oqZBG8EFgzw11r7++7XzFc/ijzwsehJ+QbaqFMdRdzw S_00001
EhpqlAj8YCGsfZczwqcsuAL/0IGctlazw/RQsAL+uUGMNCbzwZWvqAPZ7YGMMbfzwmaw4ArwGGGcVzdzwcxZBBPX7LG8m9bzw5y+ABnroSGMjgYzwNqrFBjlxIG8mjdzwrqPmA3Iw8FsI5fzwhxQwAXcPHGc2XWzwRrX6ArCG7F8ZCezwTrZ2AbIEJG83uhzw S_00001
EPk4rAXSJaGMrdWzwDJFpA3ndlGsoTWzwRq9yArIfsGcv6Wzw0XX5APGhtGMjNTzwUZUjAX7ZoGMDERzwKgjgAPeQ0G82+Qzwe1iSAzcrhGc+XQzwYpltA/cUWG8jATzwNQ8jArVpnGMMqZzw9SjoAPFjmG82sNzw0l+YADoM2Gc1PNzwHn3nAfh94GM1SRzwvWoWAbdH2GMxVUzw+AnKAn02jG8kpMzwm5vHAjhHjG8SuTzw0K3WAn2OZGcpQQzw S_00001
EoaK0APmTxGMenbzwiW38Avb04GMemczwyHs4AD9NEH8iIdzwsRVvALb8FHs1Zezw+SgBB7Jt1GckqhzwaZZEB73CrGsGShzwU34IB/cOrGsGNdzwWieMBfM/xG8GddzwIfuIBHxwjGcWbZzwES6uA7XuvG8UlezwugKBBXgz4GcCNZzwihM9AD8c1Gsa6kzwSkYEBb4E8GM3aizwMHTCBrkcjGsR4gzw1cJGB7XlrG8QRlzwZXlLBTvejGsFoWzwC3vFBHBbeGMJYZzw S_00001
Latr/ATt+LHs6Jczw/Dn8A/gOXH8rUczwnrL+ADJ5bHMZ5hzwMlZBBn6vWHc3Zlzw3efBBvwidHsfPYzwLjTABLjcaHMO/SzwLZqDBjeCKHsYRbzwX3b0AHqqYHMc+azwyMvFBr5PcHsK/Yzw4QkABHTAmH84tYzwUjZCBfxneHsViQzw S_00001
LyOU6APqqlHcGsizwPh+6AHG6qHs34nzwi5yCB3xvwHsSjozwGgiDBjA22HMJWszwKnqxAHXuyHsynozwOKqxATPE8H8ktkzwJUx4Arum8HszchzwgLUrATAnBIsValzwCF12ALOkpHMCnfzwf3n6AHw7kHM9Drzw2E7wAvbw1HcZsszw/i8qAT6ctHcHvnzw S_00001
LKfeGBzD2uHMn1kzwfu2LBriSzHstNlzwo21OBzQxuHsTBqzwb/ZNBjEWmHMMIszwRpHPBHLFxHcDHgzwqK4PB78BlHMnUfzwUDZMBXBB2H87Qbzw00rTBbgMiHc+1azwAihFB7yMqHsArhzwvfsLBfS47Hsn7lzwlVGTBX3g0HMdkgzwyD9LBj4nhHsRfezwy+YRBr6yhH8EFjzw09vOBTCY0H8PsXzw6bDMBzZo+Hck0bzwLUaIB75kyHsPzazwwKBUB/WhZH86hazwFZnXBL5llHcUrbzwdbLSBPXalHMeFXzw S_00001
L2MATBL0a0H8MvrzwI6FWBHxKxHcNawzwBCtYBr6SmHcsivzwxo1bBfD2kH8H0rzwsjcaBjkb5HsgyxzwQe5XBLTCCI8nbzzw7ODeBfGO1HswN2zwzA3bBTYkGIMIA0zwScDUBf3I7HcVwpzwXBfTBTsCwH8s2zzwdE1cB7cB7HcmOuzwK/3VBntYBI8HP3zwb/8UBTsDDI8ZYwzwxTjgBrPK7HMJJ3zwlz9fBnQ2tHMv50zwGyqbBXqozH88x5zwqawZBDKNKI8+K1zwif4dBLfOHI8YMwzwSXzeBPsjFIMPD3zw S_00001
LDMZXBT/qeH8YAzzw4bjZBvt3THcPlyzwmpkfB3yxTH8xhzzwAGzgBTsZZHcuB3zwZdxWBvyYMHsQj2zw8ACRBLjkJHcRF1zw45aPBHT/LHsGswzwr9HOBH5LGH8Lj4zwjd1UBL0ZgHsrA2zwt66YBzuzQHsBjuzwEK6WB7MPPHc5q6zw8KSZB3MTFHcrJ2zw S_00001
LjVNhBz+WNHc2YwzwsaFkBXmCMHseFxzwbEtkBzAlDH8oS1zwxnAjBzb78G8Pm2zwcldlBDK8IHcJzrzwn/dkBvxy+GcxAqzwXe7kBneVRH8rhnzwNdRgBrbSJHMVctzw8V9kBjXfTH8Aiyzwx/mnBDSTIHcpeszwsJVlBTJ48Gsztmzw416lBfWAPHcl0jzw4AtlB/lCZHMw2ozwCKyiBDH+RHc51mzw S_00001
LEHJnBrl3DHsmZ3zwRH/nBXTQ8G86e7zwXRmnB3WxwGsQm5zwC9poBnqktGstc1zwOE8qBbm7+Gceb8zwcNLrBvmcKH8H96zw8iSpBPFAMHMxU2zw9wLnBTHBEHsfZ3zw1bzmBT738GsjL/zwAdQsBfZ75Gsy85zwP/grBntl9GsznA0wHTPtBv7eMHMl05zw9coqB/jpPHMWV+zwIBRqBvDjKHsucyzwyydoBr9JUHM/L2zw S_00001
LezEmBnNmqG84q8zwpNplB7kUfGs6c7zwC+HjBbrvdG8jH4zwIfYiB/IuUG8c02zwzXMlBvBztGsw7/zwrRclB/l4aGMyL/zw52WnBDWScG8mO5zw S_00001
EfL0hBz5kmGcjv2zwh1xeBnAMmGM1gzzwOwBaBPk2qG8/h2zw2iqaBTD+xG8935zwQ8gfB7jjrGsaGuzw7V5hB7UkmG8YkqzwhEIhBrRJcG8nKozwgHIjB/GjXG8BokzwtbBjBHYkNG8dmizwhS/gBrZOHGcGojzwX5/kB7dYKG8Mefzw/MhiB7ovtGc493zwHDxdB/K5dGcknyzwAKRgBng4zG813uzwp7qbBbbKrGsSDszwMFsjBHCTlG899szw8GWiBbmGsG8YUnzw0vmeBDzNdG8x1lzw97wgBfdZWGcGXrzwC80kBnz0aG85Kjzwu/8eBLM1JGs99lzw5q8gBD/i/F8eEizwh4hmBPYaPGMnqezwQC+kBDp8CG8m5dzw S_00001
EZyQVBvSzmGMRV1zw9dZQBH6eqGsI+3zwqE5LBjIJsG8F9zzwFmbLBf1PmGcYCwzwrpsOBXJFjGskf8zw6bqSBvwPiG8eFB0wDzITBvzGsGchXE0w6ClWBHRDrGMtBJ0wRu6bBvShsGsK/I0weAbeBzMZvGM5lE0w6GkeBjqLrGs5gN0wyMAVBXcBhGsUhyzwaOHRBDQOyGMg25zw/KGOBb+LbGMBw6zw5l5KBXhGmGMxA+zwobmWBzJcgGsVc/zwG5ZRB34vbGcftD0wydLPBvpYuGcqyF0wGHxUBf4fyG8O5B0wQ/nVBjJKpGs61M0wLNVcBPhhwGsiLB0w+mNhBvMdwGsUpE0wjRkcBDKHpGc83Q0wZFShBzOPsGsMmN0w S_00001
EXskIBj/M0GM280zwBmDEB3tk2G8RdxzwJgG/AfQhuGsQPyzwUQV7Af11sG8Zt2zwYmBCBHd6BH8+eyzwmUV6Az8DFHszKvzwHnZ2AzpySHM9MwzwHSJqAvWPTHsJgszwFjMJB7nz4GMkN4zweHSFB7f91GMSStzwSsUFB35UHHcymxzwo3BBBr0ZCHMZu2zw6UuzAj60/GMeRwzwMtS8Ave4DHMl9qzw0OumA7wPbH8cwszwBXhkAHJdNHMnKuzwTEurATLSRHsxUozw S_00001
E+Wr7A7XjpGcN3tzwm1UyAHYliGMp8tzw0PmoA3WJoGcajrzwkXTpAbnJtGM7UnzwkAZ0ATEGYGck4qzwY8cqATcERGsD8qzwTv29APLJSGcSStzwb9p/APeoqG80Yqzwn0+vAHingGsHCyzwi7g2AT7/ZGc2wmzw4cDsAnOsJGMRwozwWR2jArzTVGsiCpzwsLVoAr7JPG8oDvzweLN/AvdwKGMmErzwGzK8AnzQQGMadxzwUefCB3XJXGsTDtzw S_00001
ExRCfAzcPnG83RuzwGe5LAHyMtG88xszwiW8EA7bhqGsKGnzwPTiCAbwKhGMerlzw/Vdy/q/7qGctowzw4Eu9/CTquGcCT2zwgIVn+ypYwGc6ruzwzrdc/iMCrG86g6zwhWeeA/GTiGsNexzwZRKPAPlw1GMVtszwkRQt/GHViGMw2wzw4p9+/+rX3GMwO2zw4LsOAjjgrG84O3zwyxdA/EYtuG8TdxzwySmR9eXXtG85uqzw1iD8+i7/4GMHeuzwXyWo/Wg+tGc4a+zwrCAa/GQUiGssl6zwwhJN9ArLuGMxl5zw S_00001
E28uBAzfyyGcm2jzw2cW2/C2UxGseTezwg5/3+a/hqGMU7dzwGJUq+ckwpGMWwhzw7yJv/qju8GcpPczw+42FAHJfDHMknfzw9ZiFALMZ+G8xElzwhm2BALJAzGsX1jzweRLHAzJBtGca6bzw2h+1+KkK/GsPqczwjhZ3/KHc9Gc1+XzwYrGAAb8yLH8lyfzwPoMWAPTuDHcM/dzwwKgx/WapBHc5nnzwO/rUALhj/GMNPnzw S_00001
LJvwa+GXnlGMeSZzwxZmZ/QYaeGcvfYzw+dgDAtp9jGMGwZzwxVkPAphbgGcHOdzwXQBa/MOJaGMmvSzwowBBAlFkSGsrYRzwJUS9/8eIIGsVeUzwj4XBAB3eQGc+YLzwabtX/+p5mGM7OWzwJqlU/g4rXGs8PbzwPzBD9GowVG8MySzwktUW/wbmgG8p0PzwGv1PA1gqWG89bSzwAg3LAhTzCG8BfTzwenn9/8tyJGMSwYzwSbRe/UtUEGsfZTzw5cjOA1SGLGsibKzw5qlk/gd1MG8ELKzw7giDABOBYGM7QJzw S_00001
LPs4HABLrsGcN6Wzw4M7bAt2fyGsgkXzw2XjdA9fZ3GslIdzwTcZnAlNu3GMkgfzwNhCeAx3G7GMLTTzwmwG6/QMVvGcNOUzw9qlkA1O5sG84IXzwJtimA9OY/GsY2TzwS00dAVGa3G8fWPzw76wQABQtAHs2oTzw S_00001
L46fLA9QN7G8fMfzwsX3KAxTHAHc9ekzwELbRAhFL4GMgzozwA0vcAZV/6GsGlszwdUWp/48dEHsDnlzw6oyd/AECNHcQPizwEWu7/YKs6GMwCdzwMqkUAd2VHHsjykzwGAVE/UCE+GcgBlzwFgGo/sULHHc4vpzw+IBs/YPdTHstjjzw S_00001
LosPKAxBPuGMoOozwDJ1PAZ5ylGcRAszwLT4jAJYfjGcE6rzwmC4oAh0DiG8wFwzwsgKDA9qrbGcCzqzwRArAA9yesGcBGlzwgE1LAZYeoGMACwzwdYhHA1jdVGcwptzwKuMk/kGXdGc+HrzwrTzGAdC+YGMpwmzw S_00001
Lc8boA59IjGc+Gnzw9x7zA5UphG8LemzwDLL6AVufqGsBRpzwQeHBBpcboGcp5rzwpaK3AFgngG8DogzwymiBBt+GfGsKrfzwK6+CBtolcGsNDazwX/sIBlvKcGMIBZzwWT8LBVLHUG8viazw5UFKBNH9LGcuSdzwrUERBNCuUGcJSZzwdR0jARf7jG8W0jzwMnX2AFkJaGszVozwlI2yAN2xZGMWAfzwPFh0AZD5nG8hnezw9imDBNZdmGcDzgzwoM8CBJdjYGcLMizwCvUBB9jzUGMEAZzw82SBBtOsiG8AcXzwl6ELBlKfhGMvGXzwUyKGBZerLGcSSezwH6kMBx4/FGchZezwdecSB5iHbGssOXzwuRlTBZCzOGsSYazw S_00001
LezZ2AdPX0GMOrozw5bb7Axog9Gc5Rrzwh6Y6AhGz8GswVxzwdE9ABhUR/GcRR0zwPTf2A539HH8nOpzwgC94AldqKH8tXjzwsZRyA9kMUHc9khzwipaCBFEBNHslwizw1w4vAhvj1G8MXmzwG7+BBBki9Gc2ZqzwSWDuAB4/FHcirpzwg2d4AJrtOH8pzrzwW+I3AJAkDH8WAhzw2xE0AdTDWHMdadzwDUzpAVLRSHsg9hzwDXJ0AJYGbHMREkzw3XSDBJQ7OHc9lezwu6fDBFjyTH8MSlzwCeuEBZLBGH8P9jzw S_00001
LhsBxA17Z5GcrMzzwbT7uAhzh4Gcw64zwWA70AFnGvGMoW7zwR202AJRyuGMqLA0wI93iA9db3Gsm75zwqJfYA93eBHcEw4zw41tAA505+G8KG5zw66beAh6QKH8Ys8zwrsNrAZZY3GMKlwzwca1xAt/q/Gco86zwQnBhABtMxG8BC3zwwJNhApEg0G8789zw9r3cAZxNEHccw0zwar2u/YrFGHcHQ4zwojf5/wGv4GsYL2zwhj25/80C8GciG9zwYdAVAtCaRHcR27zw8+KbAZujHHMhwA0wjvsnAlxIMH8OT8zw S_00001
Lqa43AJ1bnGs9+3zwuCR9AFTxdG8L15zwacWDBlGegGMXc9zwSdAEBF5wbGs+tB0wTpeAB1cKXG81F1zwHlkCB9JQNGclq2zw6JX2ANtUoGcnC0zwQ+73A5sKYG8q27zwwpJ6AFf0VGc8cyzw+ejDBNBnbGM58yzwZ1cBBdm1HGMsL0zw S_00001
LiNoGBR4EoG8vs7zw3mbLB5YErGckp+zw2OKKBlmKzGsZBD0w2/iNB14o1GcBYG0wMgqPBJomvGsd26zwo9kSB1RNnGsSi3zww7PSBpx8dGss44zwWtkUBRP7pG8fWzzwrTxFBlh4rGMZP4zwrqFNBhzDkGMfpA0wODJOBJz21GsCO4zwZcbSBx4FzGsQv9zw S_00001
LEiQFB9eR3Gsv9C0wqflDBpYX/G8U0G0wwLwABZZT6GsMlL0wpqF+AtZ3/GcJRP0wOA4/ABDnHHseJE0wIvnCBpvJOHs+w/zw/Ri9A1/OWHsGW9zwcldBBFu2cHMbA5zwWmx7AN/alH8n72zwn3nCBhVu0GcjLA0wahFHB9TfDHs/ZI0wUfH5ARcPDH8xdC0wpCC9ApT9MHMTSH0w0JCGB1GWSH8ofB0wg2AEBhQtIHsPq8zwS2w2Als6RHM3o7zwNJt6Ax8gbH81gA0wmfDFBx1cgHsOs6zwhjkCBZ+gXHckv1zww9o/AZTnpH8WE0zwzBH1A5vFiH8TX1zwWOu5AlCYqHMA95zw S_00001
LpDRABZFuvG80eL0wU7x7AdX1pGc66P0wHBqBBBkKhGcU9R0wHlXFBFq5dGshKP0wyGExAlBrkGM7TO0ws5BpA9sNtG8mrM0wavtyAVotcG8JyJ0w26kBBpdprGc2PI0wUca6AZkBvG8BXT0wXz7tABQLgGcDtR0wgFghAlKbpGcsjL0wlYqnAhXoyGczBQ0wpnJsAZKtxGsVSJ0wYPErAN1IZGsvsI0wW/D2ARn1gGM0UG0wnTN4ANBdWG8AFL0w S_00001
LFerAB5lddGs91W0wJC/DBBiKVGsCRZ0wlywCB5iOKGs63W0wVVDGBxr6CGcFIX0wm3JDBBN/UGMgRf0wPj77ANAyRG8Iqg0wEdI7A9TegGMp7Y0wi1QIBd+yWGst/Y0wZ6AGB9jbPG8KCh0wVl3DBBY/cGs41g0wmmN7AVrxRGs3ek0w S_00001
LBjB8AB5JJG8RjU0wXu34A1uf+FME6R0wwIc5ApWWAGcI2L0wtOqxAVZgDG8aRJ0wkr5tA1qz2FsutT0wm4OtAJxMwF8tjZ0wbZOiAh2drFcTdb0wrUNZA1PWbF8DWY0wr9NEApK1WFM30Y0wwUiw/QCtgFcWYc0wblC4/wI6HFcNsV0won22AZKXPGMonU0wnHZ+AxUtxFco/S0w3uToAp36BG8r+S0wk7zrAlyLpF80MR0wCPEyAhA3hF8MIa0wTAcwABPJ9F8WAc0wJzniA9UvlFsckf0wW0+aA5lF6FsgTb0wRc0eA12aRFMYeV0wOhr9/Ur3rF8+ye0wTpRC/IeFdF8crc0wo1fFABJRAF8zBT0wFWYR/AANEF8G+V0w S_00001
LpQWBBlLd7FMdlJ0wVDOCBVaq9F8F2D0wSsz6AdGu1F8yrA0w3M32AJXDkF8pmB0w6JQHBBigxF89IC0wOmsIBV6A0F8jQ8zwSeTNBJOylF89v6zwNAOPBpYYaFsXJ+zw7vnOBRw9kFckG2zw5sVEBt8y1Fcy5L0wLLuCBlMQHG8s0C0wj9hKBJIc3FsomE0wWzjGB56pgFsdBD0wgiWFBpzDxFsCk5zwKx6JBNLWCGsS87zw S_00001
EGZD3A9BcBG8I98zwvCAuAliC9F8El5zwEXuxAhARyF8Nc0zwDrU6A1YI3FMxXyzw71QnAJgcIGceS4zwq20iA5TbOGsmK9zwkwvZA1jbYGcyX7zwF67WAZYDHGsDUA0wk2j6ANUpIG8jc8zw7QApAF0bxFcRq7zw91UtAF6RNG8fT2zwV12gA5BoGGcYe1zwvjmpABtbQG8Mu/zwbTgTAJEocGMI3+zwweViAdLrdGsXN5zw9RiMAx7KWGs2w4zwbmpQAlAULGc8xD0wcAuJAhrfEGcWx9zwOp4fAJAEAGcupB0w S_00001
Ej3MrARsmjF8dZyzwf55tAtL1XF8Ejtzwul5kAN4EZF8FdpzwRvHdARjKKFs45ozwKQYwAxDcAFMg3uzwhI/4AJLm9Es3DzzwbcW2AJ5T6EMzY4zwOQ3BBxPL+EsRrxzwegL+Adqt3Ec9O8zwj9zFBxnl7E8Jf1zwRLaEBJ8W4Es5w6zwe4UIBFbw1E8zk+zwQEMkAtVigFcKQ0zwrg70AZs7eF80qrzwGY9oA5DK5EsPRwzwBb4yApiw4EMQKrzwwk7tAZb05E8Lh5zwcf8CB5bvAF8Fgtzwyc/7ApqJ1Ec2ZA0wtvAKBVZH8EsZU0zwX2zKBF3dBFMKs+zw S_00001
EHNYkAhu8qF8qlmzwtQ3XARaeuFMhqizw0iQYAhLYdF8rUezwKZhkAZ0uYFcgBczwjyjcAd9ZCGsgbgzwVamkAZLxHGs1tkzwzzUrAZWJ+FcVLnzwmodkANnErFcPnmzwsxvHA9qdtF8fakzwtH1iAZk+BGs3qczwoRuNAFN0GGMbkfzwgGppAVjLOGcLEjzw8DqeAt9dLGcvtnzwYs/yARbD8FcaFlzwEONtAlmsAGMeZrzw S_00001
E55qFA1hDUFsAOdzwARZDAheBFFc6yYzw66d0/co+PFs62Tzw5KKF/sY+ZFsQGUzwmL6p/0SAyE8XUazwVrQl/4VtiEcrnVzwPI37/gTWmEMkKfzwzakx/EEeXFcKgfzw4G5SA9S1+E8ShXzwPQ7p+4SD4EsNdbzw9xeB/gWXVEcDxWzwJ9AO/I0HrE8iPSzwVWVCABJpcEs8eUzwGqDn/YD+YEcBMgzwVm5NAZbYgEsfPezw2Yo9/E7VxEMxiizw S_00001
ESRiFAleCOF8fYPzwYS09/YVVYFcyaKzwx3Az/4X1HFcGJGzwwyzDA1RH3EMLxFzw5MXQAdycnF8+QIzwPjsiAt8fbF8JlHzwP3ZJAt8WxFMN/CzwkPETAtGNFFc7aPzwN/ag/wzehFc39Kzw10jSAhwk0F8YFLzwJlxoABUbmFMpDGzwlpQlA5dIVFclbLzwktmhAd0YOF8kwEzwBf6VAV8/7F8mhBzwc7kGApeukFcJEAzwpYb1/o/c6F8hlDzw S_00001
EmbKF/8ioMFM/6CzwniPw94jl9EMY6+ywqw6W+Sq4IFMBq5ywnvMi/yoCXFsDc5ywL63k/Ok2xE807AzwEgg2/G69hEMCC9yw28/n/iSKNEsGv8ywkisKA/Y1jEM5Q5ywDvQ9/6A6CEc484ywljeMALoTQEsTy2yw6KwC+I/EbFMoQDzwn6iX/sP0xEclC+ywrG3a/mI/oEczkEzwpUa+/ODR9E8BwBzw8x3UAT9GxEsjB4ywqle2/GcTkD84F4ywYtxWAnF5ME8qyzyw S_00001
EmFK++gCjCFMTb1ywBwTh+conLFcTIwywPKwq9qtQ6EcGFsywghfO/cAGsE80+qywotrv/4JIYFMJJuywOnY6/g1WqF8gAyywCo5n/4ExgFMhioywCxJSAR+a1F8XzwywbkJm/YsJ3EMH51ywWY8G/enIWF8+Jwyw8apFAtAfNFMNGuywrUWg/Ej61FMJyxywGgk7/8QijFsPB2ywzjACA1pkpFsmMnywJzyh/I+gTFcK0lyw3UMx+YnbrFsZloywZQ2UAdeEBGsetzywLsMfAFr3pF8FCxywvklRAN1Q8F8Hzsyw S_00001
LkvQp/a3c7E8k3pywyqJ4/iQjrEMzBmywjxQBAjUbWEctxoywqPuRAT6WUE8kbrywDPy8/q4rHFc63qywdJcKAX/hxEMqDkyww6ge/W52oEcZDjyw S_00001
LicPm/yNxGEcAIoywk9Us/+9hjD88iqywkSqJ+a5MWDstxtywpK/L86tzwC83MvywAg/1/apACDs5PmywrVJF/K9L8CMQIiywve/0+Mx6RD8ohiywD0rK/uWyeCMyAfyw6SYv+GJfJEMS5lywxFjDAzCmkD8yVtywZl8+/SU6iC8J4nywzg3IA/JsQDc9Vkyw S_00001
EZDQN/ImA1DsB7uyw6KZ8/k+7sD8bMyyw9AP+/kjoFEcW92ywMbPs/4QJXE8tz2ywyejSAlnMxDsc1uywqg+UARTWPD88fqywpD4kAN+bUD8SinywwiqqA1R3xDMruoywW3cnA1Q64CcNZkywDX+C/EOZJEcUftywUUB7/E9nMDsR1zyw2RLSAxhaIEc7/syw0vBgAdJOvDsalxyw5EsTAVhtuCM//rywidsHABS4VDsMznyw S_00001
EN4CKAhLn9DM5L7ywwILLAdjPLEMKHAzwT8zgAVeuKE8veCzwXIEnAhnX4DsCXBzw/ED2/IV6CEMUIEzwvls+/IfjbD8+pFzwENxRAFSRhDc0+6ywEJ7FAZuxbEsOo/ywQH82/8oGNEMiqHzws0lM/cXnDE84VCzw+ihKAlyXbDsoSIzw S_00001
EljUjABmraE8swFzwLx6tA51dcEMBKIzwhaPtAZJlkEcF5Nzw8WJlAt1stEsmhPzwxHA1AFlUrEMt0EzwOG61AhXvkEs5E/ywcJj9AF92XEsg58ywDf7uAlysqE88x6ywQHy7AlRbVEczg3ywiN1yAJu1gE8bH2yw6TvlA5Cc3EMwb6ywlQ7tAFdSjE8qLxywBK0gAB/35E8If1ywibykAhHFwEso/wywHPfbAxH3lEcgnGzwqXrxA13vMEcPVIzwIowxAt5g7E8o1EzwSwG9AZRirEMjbGzwme0BB1zqREMTm/ywLdKABhmrMEsL/0yw1QPiAxJi/Ec639yw4dWxAdVObE8xttywZ2VTAhG2DFcVR1yw5qrgAJpZyEMMMtyw S_00001
ERly1ABVNhEM37QzwrkA2AtMXnEs0jWzwN2/9A1NW5EMXiXzwQsxDBdh72E8mgWzwtKH4AdnXUE8AOazw8b74AZq1ZEcYIgzw4XH7AFCNHEMxpjzw16K8A1bdME8zSpzw3h++ApA28D8qItzw1CXABVyXUDsv/rzwNtv/AhZdFEcxGyzwKlT8Ax2MaE84TPzwUZMuANKftE80vXzwAClxARIGJE8hnZzwiIm/AVqHNEs85YzwWDZ/AFiWlEs6qgzw5AZxANlAhEMqZhzwUuk0AVwj3Ds1RjzwH/RBBNWW/D8TZizweuD7AdbmaE8iLrzwLc9/Alq/JD8AMozwmDaBBBZ1/Css7uzwtNP+ARnAVEMJ7yzw0f6ABV1j2DM5D1zw S_00001
E1yB6A15YLFswhZzw7JcAB1iedFcQ4azwKj1CBxV7aFcccgzwWTfABVBnQFs56jzwibk6AhuWyFMYhazwp/V3Ap2s4Fsl3Uzwv4IwAhL2IGs3pUzwDOetAFB9JG87oNzwbvDyA5tmMFMqHazwFyyDB1VTeFsfGYzwNVbzAByUwFcs9czwP4l/Ale2+FsqPczw/jl+AFJH6FcHeSzwEUTyA1iDsFcVPTzwszCpAphTRGsK3MzwYsA1AZSHKG8WcLzwRHvoAB0GDGccVMzw S_00001
EqlhHBZ1YkF8+QhzwYtTKB1hxiF89Xmzw2sMPBBPTxF8ygmzweHBRB5YD5F8gXizw5a8LB5RnLF82bnzwe4EQB9OzCFczijzwMWSRBtylmEcHekzwhVlLB9hZbEcgKhzwADNJBFw6sFsdRezwQPsHB95DoF8cmpzwUhiNBNOCLFcHfrzwUAUIB1z+BFsoNnzwqGoOBNJiFFccffzwpWzTB9whLFMJJkzwJSwLBxf/JE8LZhzwLD8HB9FEhEsYGjzwDBlLB5LVgEMt+czw S_00001
LnAURBpo70FcaTrzw0WNWBVwqAGsG9rzwbxoaB592zFc+buzw7gXfBlX34F8s4tzw4xRVBVNpKG8mcvzwkssTBl1aHGM+t0zwLG8QBxNrRGcFCtzwkxePBxd8uF8Aluzw1JrXBRvODGMWDozwqv/YBlhKPGMetvzw8xpSBJ0mNGMbv2zwyvVQB5vrYGcjjvzwYnJSBNrNUG8qCpzwgHONB1dKNGscxszw S_00001
LN0EZBNIviFcDLxzwd61cBNbISFcByyzwCs2dBdtYCFcgPuzwckGaBhkI6Es3zrzw+D1aBh/wFFstt3zw6uUaBR3HUF8EK8zwz6seB5a6zEMYK5zwdYLVBhuLhFscKyzwgXWgBtiUZFsPvzzw7z6WB5F8+E8a02zw+ynWBR7XVFsfI9zwVcNdBZyWrE87p8zwruDfB5v3oEMpz1zwTgThBFru6E88D6zw S_00001
LkSehB17R+E8jHtzwyKPiBNVJxEs/iozwVlDhBVkvaE8C+ozwRIDgBJB/RE87ClzwgPSlBhm3vEszEozwO+mmB5JbEFs+JmzwnNNlB5lYSF8iVkzwqL9oBxJCHFc/FnzwZr6iBRoaEFcdfvzwzQchBRnH4EMQ4kzwQ2QmBBaaqEMeurzw0FelB1lnjEce/kzw S_00001
LX4LhBFfiREMNwtzwJHOgBtAp3DsppuzwSfWaBVoA2Ds1ouzw0vsXBRPCKEcZZwzw2wThB1BTmDso7zzw5IWkBBtzjDcvN0zwyZvlBluIADcnRvzw76zkBVAQNCcZ/xzwwR+hBBOzZEMQ2wzwSz4gBdYziDs3arzw+ukgBBOT7DcPF3zw74dgBp2XGD8Td0zwnOJlBJi7BEMzlzzw7a5kBB/lYDMUM4zw0JilBFronBcMYvzwIVslB1gjJCsI91zwO4oiBh4WLCMBTyzw S_00001
Lc8JYBFquSDMPpszwZuXSBF4cNDMlTszw1PbQBJsiqC8mFwzwwvKTBlWjKCsj8wzwFetQBBfhDDMTlmzwPijaBB/86CsEVrzwVudQBxTQrD88htzwXXYMBdmr/CclZmzw6v6RBBQvdDsN+jzwdhoSBhrDmCsuRlzw S_00001
LbXrLBJO4wCcxVyzwOZWJBp04RC8rB2zwDfvGB9d+ZB8KBzzwpNyGB9AqXBcLGuzwhsTFBJNqnCsyo5zwYf4ABx392Cc2x2zwrLoJBJA3LDsgexzw0INMBJ9dFCsC84zwUE8DB9KpQCsJn8zwKOQHB5eZCDMLp7zw53T7AJpPsCc0X4zw S_00001
LnQeEBlSvdAcWA2zwYVZCB1y3d+7DrzzwjWE9ABQpD/bDHvzwL7L1AlGrPAMf0vzwIjE/A9Hv76rw43zwhSG6AFkAc9z2R1zw9gaDBBedG1zTR8zwmdLEBVZxmAsr/5zwGSlFBt5gk8r62xzwD304AJKz19rpy5zwCjF2AxI86+DLU4zwR9S0AZnYL8T2Ryzwj3KABxQF6+DOYzzwv7UBB9Ezo8DvN/zwPjrGBFDsf8Tgh6zwGXBFBBYLX9L4N+zw S_00001
LlFY/AlH249bIbqzwLyl4AZWPV+7ovlzwKKEtA5kNE97W6mzw3jCrAJUlz4Tq6pzwRFs9ABfhP6LVchzw9qkEBF2c54LDDjzw5niEBpEGi47ZEpzwLAj/Alaf2974YqzwzMJ4Ad79NAM4ekzwA755AVTT28z1Shzw8M38AZna587CcdzwisbGB9go68D6ahzwV/4GBFRkE+74hhzwJyNEBNO9c9j1qqzwNTMIB9uRZ8L3xqzw S_00001
HZEilAVle++bLhkzwkNYUAhOqa+rcSlzwYUOPAVCk85jmBkzwkoPDApKFm9j57mzwKETGAd9sHAsYyhzw0xbc/s4YU/Lh8hzwc2DIAFeQkBcunjzwfHunABwAQAcnGizwZ+sPAF7cr+7Vdpzw+dIMA5JcFAcjrdzwiOFr+c8JUAMtcfzw35HY/wTVj8rqcgzwb0CF/kUCZ/LMDmzwXCD8/4iTGCclGhzwaVyCA9mRpBc/wnzwEYpYABxR5Bc9Tjzw S_00001
HXxVYANbIA9TtqfzwvDBVApMvIA0yDezwYdxbARrVGBkCeizw6XoRANaQECUDUjzwj6mgAJ0ebAEx8YzwWa6YApzCd/TRkUzwHJ6gA1U6h4DRadzwUQnEAh4XWAEc1czw+T8oAdpMJA0ZhZzwGWJgA9n2fB0fIYzw4f7fABKKBAEtWRzw S_00001
HRxemARXMwAkhRlzwzdBrANQboBEhVpzw57VkAhbOnB0nbuzwwUfhARrMVC0rkwzwRen2ApAOPBkEtqzw3Ru6AVk9BCEDZvzwPD19ARSyaBE42lzwCQ9pARv2t/zskkzwGZ8qAtVhVCELCozwpg12AtNfLA0nvrzwzqdBBFeQxBUgTwzwcBs1A5Qp4B0S4yzwu8g6A5f0jCkiWuzwzk/CBRZpIBkL5mzwsir9A9DzOCkkmkzwWO/6AlZbyAEKmizw S_00001
Lpt3hAhHeaAk0WwzwRKgWAhsWQAEeH1zwqhk//oD8vAkTI0zwXGVn/UaF/AUN53zwcStVAZytJ9j892zwPCyOAR1b08zQ18zwNFpGAlFYHy78bzzw9f5RAZDPp8bZT/zwbfpkAF+iL/zUeuzwgRdcAl4Q4AEVX4zwvr3iAZ/P66Tpv2zwU407/EI459TPA9zwkzJYA1TT4+jwC/zw8oQGABfjG+rTz0zwOiPMARjbMyzDUvzwiCMt/8zTQ7zaqzzwp+oMA1sOk87edD0w9FZhAdu0u9b5I/zwERiIA5gxy+LmG9zw S_00001
HBQN0/4pw5Ak5CvzwnB9p+4NGcBUtjtzw2JA/9IMvaCkW2vzwfXQg/mTtpC0/Xwzw8KgEAJgApAUrIszwAxw5+S56xAE9Fvzw5KJh+s3KfBUqNpzw S_00001
HslKn/Ax6vCkTNxzwX5Sl/AGeaDUplzzw5M3x+E77ZDEM14zwhGi59yv66DEBo6zwKGOJANW8rD0zg0zwt3SVA1DgWDUgE5zwVM0lA1o5nD0dk5zwi9woAd4LBEk+X2zwBHtrAxxKYD0F38zwSd/BAFAMiCU1kwzw7RjI/4APwDUH7wzw5YmHAlyAHEkZW1zwBvCSABsjnDUqywzwAN8VAN2wzCkhu4zwcUFMA5TNfDUsm8zw S_00001
Hhitl+Q8S0C0fR7zwYUrz+mUhvCU6WA0wsCN9/SG9tCE+i/zw8M6KADjW0CUoTD0wAo7j9sxLHC0/QD0w4uEx/ovEIC087E0wzO98/saEBB0fBI0wd9+g/07HPAELMJ0wygqQANyC6A0zmJ0wAX5N/YkUaCUEk5zw12VU+miKLDEe5C0wMHKy9KxqYBkGkA0wEwqD/+vjDCEVzG0wQir5/YbVkC0JQH0wHCIBAhSbIC0XJB0w S_00001
LIWSFAnGalC0Zn6zwbV+bAHHRkCUAR5zwwdcjAXCaODU+p6zwLAfsAPh4ODk9m8zwoadfA/5oaC0VSzzwKqYrATBnhCU/wxzwRaoYATvLaBEL/xzw4Yv0/aMjfC0mu3zwlzNiArpMMCkOn7zw9iVVALV2vCkK7wzwyOesA/wqaCUqhtzwpImtA/YwCDELjyzwPtcwAroYMCU1H0zwQLMbA7VrNB00vtzwrcChAz/YtAUqW0zwCPuHAjUHSBkm7yzw S_00001
LVVzbALiwxD00o5zwVRLiA3YEOE0C06zwKzojADXRRE0xzA0wy/xpAjjBfEkaiC0waz0VAvfTfEEzg4zwciENAvTNvDUgA4zwXoCqArPhPEEw94zw0AccAvmBvEkLb5zw5zsUA3yWdEkEM0zwZO9FA3b6dEEpR6zw S_00001
LlR6bAXifEEU29D0wtN+bAnF+GEE/wJ0wpxKmAj4ZwDEWXM0wt93nAvJ+xD0dNR0wDvrFATWmCE0hDM0wrxFp/adTSE0vOK0wGGuw/qcOlEE1fK0woU8m+OJULEEuAI0wB9/SAbUhxDUnTC0wyzTgA3XQXE0A0K0wikIAA3XkkDURYL0w571IA7L8EEEfTQ0w S_00001
HHqNrAf8eVDEYHJ0wEJ+yAnBj2C0lHL0wI9U8Afe1MDEm2N0wokGABvfV+CUCAS0wWs/2AfdIaCEdiG0wDZ1uAPjizBUoYE0w/DUzA3FnGBk0d/zwcHHsAHoDzAEKvI0w0jopAPceWDk7JF0wyAOvAXoZiCU9IO0w9gj4Aj8syCEPjD0wpWd+APIGKCkbkH0wU/jnAnUdLCEgbD0wHpdtAfZyYA0u99zwu6B1Ajwy1BEvX8zwlcp6ATiClA0FiA0wBiTmA/3HFAE6MH0wFYWzA32ZRAkZ9J0wpwtoAPUXUBE+KM0w S_00001
HaH7/ALmKwDkXgL0w89REBjguEEEp0N0wPfTCB7W8REk4iS0wXMfFBn8ZaEEmpV0wzouGBniITEUemJ0wNTKDBbTBjEUT5H0w+ml8AzFw5DktBI0wPguHBb4T2DEgBP0wIdRKBzvvaE04RL0wGL4HBXJYJE0cLG0waZ1EBjWlrEUlLF0w S_00001
HzME6ATHqTEUQET0wd0O1AXsoeEUAnX0wffszAfnePE0YUc0wLZ7zA3XLWEUp8g0wUOfqAX/loEkuBW0wdAHrArir2EkXMR0wpJKiAPVO/EkrxO0wdRmzAb/s9EE3UO0wYAIlAv36KFULoK0wyIqvAL1PKFEPRK0wNrR1ArKMNEUjPQ0wMxi6AT3TrE0R/Y0wNlskAr5EcEEoGV0woMcnAv2eyEEwRZ0wMdM8A/2K7EkNtO0wAtXeAHGGTF0WLI0wSIK0Ab5sRFkneH0w S_00001
Hx8HyA/DC2D0CHb0wPypwA/vpVDEnPf0w4836A7hFPDUVdi0wUNm6AXWv+CE77m0wqygsALQorCUL+c0whx9gAX9tsCEKEb0weUtaA776ECEUXY0wWK1EAbGVGCkLZW0wGMN4/u6JSBExFT0wczcHAj/pRAkjQR0wSlN/+uCLcBEKqR0wKd8xAT8HtDEkOX0wkqjqAnvLgDEqEi0wflsxA7sNjCEeoZ0w29TtAbusTCEmHg0w7rlXAXHFyC0yge0wpHEgAf6HHDE5PY0wkkiiAzDZ9Bku8U0wfLybALCyUBUZLb0wuiWy/y5BcCERHX0wyM9WAXKiLAkXVS0wpQnAAvw/M/TTyO0wId1A9gkYHC0+CT0wIJRe9WvTxA04LP0w S_00001
Hsi8BBTL7bD0aJg0wr6EHB3PjZD015i0w59MHBTiR3DUzun0w36UKB/q1wDU4cr0wQmpLBPSikD0sEf0wdxmMBrGbDDkjta0wzT2QBLHBSD0E3W0wz1tSB75X1DkzaX0wK/iSB3Hl4CE7oT0wMN0BB/UonD0jYc0w7CtHB/DQ5C0lbk0wy2qKB7xmBE0jPd0w7UQPBji5nDkVfh0wEjpNBPD6jCEgQc0wQhxIBD0pBD0spY0w S_00001
LjYyDBLA7LEUgpn0wSXtDB/RAcEE13r0wO1uABTu5TE0Zyw0wXjK7A7g0EEU6cw0whzQBBXY1wE027p0wN1kEBjJM8EU8yl0w1XKJB7CZCFEizm0wFdKCBrMGAF0QQh0wWZLBB/VMNE0Jlk0wnTyHBTJefEUqKt0w5aH6Az1oxEkXyo0w7H0BBvXx4E00xt0wIBIEBLXmHF0DUe0whru8AnWl7E0Vug0w S_00001
H0zvBB7UAeEkiW10wR0q+A7hRXEk1Y60w5XhyA30AZEEOL60w5a3sAzhLOEkUK90wQQhBB3QnkE0NC/0wqURHB/8cfEklkA1wRWTJBLihPEEDv+0wvDyJBLyqsEU2CD1wWTQEBTMrqEEUV10w/HQABr1eGEUpI70wx9GBBD8z1Ekob+0wXmr9An6dfEkhOC1w S_00001 -
April 21, 2014 at 5:47 pm #10011Anonymous
As far as I can tell, the snippet you show looks fine. At this point I’m guessing there’s an issue with one of the other structures in the silent file.
The error you’re getting is due specifically to the format of the SYMMETRY_INFO line. “-silent_read_through_errors” should theoretically fix that, but it looks like there may be a problem with the SYMMETRY_INFO reading code interacting with that option.
Try greping out the SYMMETRY_INFO lines. (“grep SYMMETRY_INFO silent.out”). Most of the lines should be more-or-less the same, but you may find that there’s one which has too many or too few entries between CHI_CLONES and JUMP_CLONES. You’ll need to manually delete that structure from your silent file. This would involve deleting the lines from the SCORE line before the bad SYMMETRY_INFO line up to (but not including) the SCORE line after the bad SYMMETRY_INFO line. (Alternatively, you may be able to replace the bad SYMMETRY_INFO line with a good one.)
-
April 17, 2014 at 9:49 am #9977Anonymous
I am using the same version of rosetta. read_through_errors flag you mentioned also gave the same error.
Can you provide any more suggestions…
I am searching but, nowhere I can find solution to similar problem.. -
April 17, 2014 at 4:40 pm #9988Anonymous
Are you trying to read in a silent file with symmetric structures? If so, you may want to provide to the the symdef file you used for generating the structures in the first place to the extract_pdbs commandline.
Failing that, could you post an example of what’s in your silent file? The first several hundred lines or so would likely be sufficient.
-
-
AuthorPosts
- You must be logged in to reply to this topic.